ANN Inverse Analysis in Stochastic Computational Mechanics
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F09%3APU85933" target="_blank" >RIV/00216305:26110/09:PU85933 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
ANN Inverse Analysis in Stochastic Computational Mechanics
Original language description
An approach of inverse analysis is proposed to obtain parameters and their statistics of a computational model in order to achieve the best agreement with experimental data. The inverse analysis is based on the coupling of a stochastic simulation and anartificial neural network (ANN). The identification parameters play the role of basic random variables with a scatter reflecting the physical range of possible values. A novelty of the approach is the utilization of the efficient small-sample simulationmethod Latin Hypercube Sampling (LHS) used for the stochastic preparation of the training set utilized in training the neural network. Once the network has been trained, it represents an approximation consequently utilized in a following way: To providethe best possible set of model parameters for the given experimental data. The paper focuses the attention on the statistical inverse analysis of material model parameters where statistical moments of input parameters have to be identifie
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
JM - Structural engineering
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
Artificial Intelligence: New Research
ISBN
978-1-60456-282-8
Number of pages of the result
27
Pages from-to
—
Number of pages of the book
800
Publisher name
Nova Science Publishers
Place of publication
USA
UT code for WoS chapter
—