Statistical material parameters identification based on artificial neural networks for stochastic computations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F17%3APU124201" target="_blank" >RIV/00216305:26110/17:PU124201 - isvavai.cz</a>
Result on the web
<a href="http://aip.scitation.org/doi/abs/10.1063/1.4989942" target="_blank" >http://aip.scitation.org/doi/abs/10.1063/1.4989942</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/1.4989942" target="_blank" >10.1063/1.4989942</a>
Alternative languages
Result language
angličtina
Original language name
Statistical material parameters identification based on artificial neural networks for stochastic computations
Original language description
A general methodology to obtain statistical material model parameters is presented. The procedure is based on the coupling of a stochastic simulation and an artificial neural network. The identification parameters play the role of basic random variables with a scatter reflecting the physical range of possible values. The efficient small-sample simulation method Latin Hypercube Sampling is used for the stochastic preparation of the training set utilized in training the neural network. Once the network has been trained, it represents an approximation consequently utilized in a following way: To provide the best possible set of model parameters for the given experimental data. The paper focuses the attention on the statistical inverse analysis of material model parameters where statistical moments (usually means and standard deviations) of input parameters have to be identified based on experimental data. A hierarchical statistical parameters database within the framework of reliability software is presented. The efficiency of the approach is verified using numerical example of fracture-mechanical parameters determination of fiber reinforced and plain concretes.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20101 - Civil engineering
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
The 2nd International Conference on Smart Materials Technologies
ISBN
978-0-7354-1532-4
ISSN
—
e-ISSN
—
Number of pages
7
Pages from-to
„020005-1“-„020005-7“
Publisher name
Neuveden
Place of publication
Neuveden
Event location
St.Petersburg
Event date
May 19, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000410618900005