All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Statistical material parameters identification based on artificial neural networks for stochastic computations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F17%3APU124201" target="_blank" >RIV/00216305:26110/17:PU124201 - isvavai.cz</a>

  • Result on the web

    <a href="http://aip.scitation.org/doi/abs/10.1063/1.4989942" target="_blank" >http://aip.scitation.org/doi/abs/10.1063/1.4989942</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/1.4989942" target="_blank" >10.1063/1.4989942</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Statistical material parameters identification based on artificial neural networks for stochastic computations

  • Original language description

    A general methodology to obtain statistical material model parameters is presented. The procedure is based on the coupling of a stochastic simulation and an artificial neural network. The identification parameters play the role of basic random variables with a scatter reflecting the physical range of possible values. The efficient small-sample simulation method Latin Hypercube Sampling is used for the stochastic preparation of the training set utilized in training the neural network. Once the network has been trained, it represents an approximation consequently utilized in a following way: To provide the best possible set of model parameters for the given experimental data. The paper focuses the attention on the statistical inverse analysis of material model parameters where statistical moments (usually means and standard deviations) of input parameters have to be identified based on experimental data. A hierarchical statistical parameters database within the framework of reliability software is presented. The efficiency of the approach is verified using numerical example of fracture-mechanical parameters determination of fiber reinforced and plain concretes.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20101 - Civil engineering

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    The 2nd International Conference on Smart Materials Technologies

  • ISBN

    978-0-7354-1532-4

  • ISSN

  • e-ISSN

  • Number of pages

    7

  • Pages from-to

    „020005-1“-„020005-7“

  • Publisher name

    Neuveden

  • Place of publication

    Neuveden

  • Event location

    St.Petersburg

  • Event date

    May 19, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000410618900005