Methodology of using artificial neural networks for identification of computational model parameters
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F06%3APU65609" target="_blank" >RIV/00216305:26110/06:PU65609 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
čeština
Original language name
Metodika použití umělých neuronových sítí pro identifikaci parametrů výpočtových modelů konstrukcí
Original language description
The paper suggests a new approach of inverse analysis to obtain parameters of FEM computational model in order to obtain best agreement with experimental data. The proposed inverse analysis approach is based on coupling of FEM computational model and thestochastic training of artificial neural network. Identification parameters play the role of basic random variables with a scatter reflecting the physical range of possible values. Novelty of the approach is the utilization of efficient small-sample simulation method Latin Hypercube Sampling (LHS) used for stochastic training of neural network. Once the network is trained it represents an approximation consequently utilized in an opposite way: For given experimental data to provide the best possible set of model parameters. The approach is general and can be applied easily to any inverse problem of engineering mechanics.
Czech name
Metodika použití umělých neuronových sítí pro identifikaci parametrů výpočtových modelů konstrukcí
Czech description
The paper suggests a new approach of inverse analysis to obtain parameters of FEM computational model in order to obtain best agreement with experimental data. The proposed inverse analysis approach is based on coupling of FEM computational model and thestochastic training of artificial neural network. Identification parameters play the role of basic random variables with a scatter reflecting the physical range of possible values. Novelty of the approach is the utilization of efficient small-sample simulation method Latin Hypercube Sampling (LHS) used for stochastic training of neural network. Once the network is trained it represents an approximation consequently utilized in an opposite way: For given experimental data to provide the best possible set of model parameters. The approach is general and can be applied easily to any inverse problem of engineering mechanics.
Classification
Type
D - Article in proceedings
CEP classification
JN - Civil engineering
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2006
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Dynamicky namáhané konstrukce - DYNA
ISBN
80-214-3164-4
ISSN
—
e-ISSN
—
Number of pages
8
Pages from-to
115-122
Publisher name
Neuveden
Place of publication
Brno, ČR
Event location
Brno
Event date
May 11, 2006
Type of event by nationality
CST - Celostátní akce
UT code for WoS article
—