All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Methodology of using artificial neural networks for identification of computational model parameters

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F06%3APU65609" target="_blank" >RIV/00216305:26110/06:PU65609 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    čeština

  • Original language name

    Metodika použití umělých neuronových sítí pro identifikaci parametrů výpočtových modelů konstrukcí

  • Original language description

    The paper suggests a new approach of inverse analysis to obtain parameters of FEM computational model in order to obtain best agreement with experimental data. The proposed inverse analysis approach is based on coupling of FEM computational model and thestochastic training of artificial neural network. Identification parameters play the role of basic random variables with a scatter reflecting the physical range of possible values. Novelty of the approach is the utilization of efficient small-sample simulation method Latin Hypercube Sampling (LHS) used for stochastic training of neural network. Once the network is trained it represents an approximation consequently utilized in an opposite way: For given experimental data to provide the best possible set of model parameters. The approach is general and can be applied easily to any inverse problem of engineering mechanics.

  • Czech name

    Metodika použití umělých neuronových sítí pro identifikaci parametrů výpočtových modelů konstrukcí

  • Czech description

    The paper suggests a new approach of inverse analysis to obtain parameters of FEM computational model in order to obtain best agreement with experimental data. The proposed inverse analysis approach is based on coupling of FEM computational model and thestochastic training of artificial neural network. Identification parameters play the role of basic random variables with a scatter reflecting the physical range of possible values. Novelty of the approach is the utilization of efficient small-sample simulation method Latin Hypercube Sampling (LHS) used for stochastic training of neural network. Once the network is trained it represents an approximation consequently utilized in an opposite way: For given experimental data to provide the best possible set of model parameters. The approach is general and can be applied easily to any inverse problem of engineering mechanics.

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    JN - Civil engineering

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2006

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Dynamicky namáhané konstrukce - DYNA

  • ISBN

    80-214-3164-4

  • ISSN

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    115-122

  • Publisher name

    Neuveden

  • Place of publication

    Brno, ČR

  • Event location

    Brno

  • Event date

    May 11, 2006

  • Type of event by nationality

    CST - Celostátní akce

  • UT code for WoS article