Geometric Control of the Trident Snake Robot Based on CGA
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F17%3APU122986" target="_blank" >RIV/00216305:26210/17:PU122986 - isvavai.cz</a>
Result on the web
<a href="http://link.springer.com/article/10.1007/s00006-016-0693-7" target="_blank" >http://link.springer.com/article/10.1007/s00006-016-0693-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00006-016-0693-7" target="_blank" >10.1007/s00006-016-0693-7</a>
Alternative languages
Result language
angličtina
Original language name
Geometric Control of the Trident Snake Robot Based on CGA
Original language description
We demonstrate the theory on the 1-link trident snake and the functionality in the CLUCalc software designed for the computations in Clifford algebra. Local control of a general trident snake robot is solved by means of conformal geometric algebra. It is shown that the model modifications are much easier to handle in this setting. Within this paper, we present an alternative model description only, while all its kinematic properties remain. The equations of the direct and differential kinematics, the Pfaff constraints, the inverse kinematics and the singular postures are discussed and translated into the language of CGA.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/LO1202" target="_blank" >LO1202: NETME CENTRE PLUS</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ADV APPL CLIFFORD AL
ISSN
0188-7009
e-ISSN
1661-4909
Volume of the periodical
27
Issue of the periodical within the volume
1
Country of publishing house
CH - SWITZERLAND
Number of pages
12
Pages from-to
633-645
UT code for WoS article
000396031500044
EID of the result in the Scopus database
2-s2.0-85014495815