Local controllability of trident snake robot based on sub-Riemannian extremals
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F17%3APU123692" target="_blank" >RIV/00216305:26210/17:PU123692 - isvavai.cz</a>
Result on the web
<a href="http://siba-ese.unisalento.it/index.php/notemat/article/view/17176" target="_blank" >http://siba-ese.unisalento.it/index.php/notemat/article/view/17176</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1285/i15900932v37supp11p93" target="_blank" >10.1285/i15900932v37supp11p93</a>
Alternative languages
Result language
angličtina
Original language name
Local controllability of trident snake robot based on sub-Riemannian extremals
Original language description
To solve trident snake robot local controllability by differential geometry tools, we construct a privileged system of coordinates with respect to the distribution given by Pffaf system based on local nonholonomic conditions and, furthermore, we construct a nilpotent approximation of the transformed distribution with respect to the given filtration. We compute normal extremals of sub-Riemanian structure, where the Hamiltonian point of view was used. We demonstrated that the extremals of sub-Riemannian structure based on this distribution play the similar role as classical periodic imputs in control theory with respect of our mechanism.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA17-21360S" target="_blank" >GA17-21360S: Advances in Snake-like Robot Control</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Note di Matematica
ISSN
1123-2536
e-ISSN
—
Volume of the periodical
37
Issue of the periodical within the volume
suppl. 1
Country of publishing house
IT - ITALY
Number of pages
10
Pages from-to
93-102
UT code for WoS article
000411156300009
EID of the result in the Scopus database
2-s2.0-85019738107