Electro-mechanical analysis of a multilayer piezoelectric cantilever energy harvester upon harmonic vibrations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F18%3APU129409" target="_blank" >RIV/00216305:26210/18:PU129409 - isvavai.cz</a>
Result on the web
<a href="https://www.matec-conferences.org/articles/matecconf/abs/2018/69/matecconf_cscc2018_02053/matecconf_cscc2018_02053.html" target="_blank" >https://www.matec-conferences.org/articles/matecconf/abs/2018/69/matecconf_cscc2018_02053/matecconf_cscc2018_02053.html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/matecconf/201821002053" target="_blank" >10.1051/matecconf/201821002053</a>
Alternative languages
Result language
angličtina
Original language name
Electro-mechanical analysis of a multilayer piezoelectric cantilever energy harvester upon harmonic vibrations
Original language description
This paper addresses an important issue of the individual layer thickness influence in a multilayer piezo composite on electro-mechanical energy conversion. The use of energy harvesting systems seems to be very promising for applications such as ultra-low power electronics, sensors and wireless communication. The energy converters are often disabled due to a failure of the piezo layer caused by an excessive deformation/stresses occurring upon the operation. It is thus desirable to increase both reliability and efficiency of the electromechanical conversion as compared to standard concepts. The proposed model of the piezoelectric vibration energy harvester is based on a multilayer beam design with active piezo and protective ceramic layers. This paper presents results of a comparative study of an analytical and numerical approach used for the electro-mechanical simulations of the multilayer energy harvesting systems. Development of the functional analytical model is crucial for the further optimization of new (smart material based) energy harvesting systems, since it provides much faster response than the numerical model.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20201 - Electrical and electronic engineering
Result continuities
Project
<a href="/en/project/GA17-08153S" target="_blank" >GA17-08153S: Novel material architectures for SMART piezoceramic electromechanical converters</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
MATEC Web of Conferences
ISBN
—
ISSN
2261-236X
e-ISSN
—
Number of pages
6
Pages from-to
1-6
Publisher name
EDP Sciences
Place of publication
neuveden
Event location
Palma de Mallorca, Mallorca
Event date
Jul 14, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000567668400059