All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Design of Total Site-Integrated TrigenerationSystem using trigeneration cascade analysis considering transmission losses and sensitivity analysis

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU144593" target="_blank" >RIV/00216305:26210/22:PU144593 - isvavai.cz</a>

  • Result on the web

    <a href="https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0360544222008611" target="_blank" >https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0360544222008611</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.energy.2022.123958" target="_blank" >10.1016/j.energy.2022.123958</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Design of Total Site-Integrated TrigenerationSystem using trigeneration cascade analysis considering transmission losses and sensitivity analysis

  • Original language description

    Distribution of energy from a Total Site Trigeneration Energy System (TSTES) to fulfil process energy demands can result in transmission losses due to frictions in pipelines and the electrical grid. Sensitivity analysis can be used to design the required backup system to address such risk. Previously, the Trigeneration System Cascade Analysis (TriGenSCA) method that was used to design a TSTES has assumed no transmission losses and ignored the need for a backup utility system. This paper proposes an extension of the TriGenSCA to consider transmission and storage energy losses and sensitivity analysis to enable a trigeneration system involving batch processes to produce realistic energy targets and to design a backup utility system of appropriate capacity. The methodology was applied on a case study involving a Pressurised Water Reactor (PWR) integrated with a trigeneration system within an industrial Total Site comprising four process plants. This study shows an increase of up to 15% in total annual cost for a trigeneration system with transmission losses as compared to the one without transmission losses, and it shows that Plant B shutdown, which requires additional 3.1 MW low-pressure steam and 3.25 MW of hot water represents the worst-case scenario of a single plant shutdown.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20704 - Energy and fuels

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Energy

  • ISSN

    0360-5442

  • e-ISSN

    1873-6785

  • Volume of the periodical

    neuveden

  • Issue of the periodical within the volume

    252

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    17

  • Pages from-to

    123958-123958

  • UT code for WoS article

    000800409800005

  • EID of the result in the Scopus database

    2-s2.0-85128993438