All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A digital 3D Jordan-Brouwer separation theorem

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F24%3APU152493" target="_blank" >RIV/00216305:26210/24:PU152493 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.anstuocmath.ro/mathematics/anale2024v3/9_Slapal.pdf" target="_blank" >https://www.anstuocmath.ro/mathematics/anale2024v3/9_Slapal.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.2478/auom-2024-0034" target="_blank" >10.2478/auom-2024-0034</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A digital 3D Jordan-Brouwer separation theorem

  • Original language description

    We introduce a connectedness in the digital space Z^3 induced by a quaternary relation. Using this connectedness, we prove a digital 3D Jordan-Brouwer separation theorem for boundary surfaces of the digital polyhedra that may be face-to-face tiled with certain digital tetrahedra in Z^3. An advantage of the digital Jordan surfaces obtained over those given by the Khalimsky

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Analele Stiintifice Ale Universitatii Ovidius Constanta, Seria Matematica

  • ISSN

    1224-1784

  • e-ISSN

    1844-0835

  • Volume of the periodical

    32

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    RO - ROMANIA

  • Number of pages

    10

  • Pages from-to

    161-172

  • UT code for WoS article

    001335906900006

  • EID of the result in the Scopus database