A digital 3D Jordan-Brouwer separation theorem
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F24%3APU152493" target="_blank" >RIV/00216305:26210/24:PU152493 - isvavai.cz</a>
Result on the web
<a href="https://www.anstuocmath.ro/mathematics/anale2024v3/9_Slapal.pdf" target="_blank" >https://www.anstuocmath.ro/mathematics/anale2024v3/9_Slapal.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2478/auom-2024-0034" target="_blank" >10.2478/auom-2024-0034</a>
Alternative languages
Result language
angličtina
Original language name
A digital 3D Jordan-Brouwer separation theorem
Original language description
We introduce a connectedness in the digital space Z^3 induced by a quaternary relation. Using this connectedness, we prove a digital 3D Jordan-Brouwer separation theorem for boundary surfaces of the digital polyhedra that may be face-to-face tiled with certain digital tetrahedra in Z^3. An advantage of the digital Jordan surfaces obtained over those given by the Khalimsky
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Analele Stiintifice Ale Universitatii Ovidius Constanta, Seria Matematica
ISSN
1224-1784
e-ISSN
1844-0835
Volume of the periodical
32
Issue of the periodical within the volume
3
Country of publishing house
RO - ROMANIA
Number of pages
10
Pages from-to
161-172
UT code for WoS article
001335906900006
EID of the result in the Scopus database
—