All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Approximate Bayesian inference methods for mixture filtering with known model of switching

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F16%3APU119990" target="_blank" >RIV/00216305:26220/16:PU119990 - isvavai.cz</a>

  • Result on the web

    <a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7501157&isnumber=7501055" target="_blank" >http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7501157&isnumber=7501055</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/CarpathianCC.2016.7501157" target="_blank" >10.1109/CarpathianCC.2016.7501157</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Approximate Bayesian inference methods for mixture filtering with known model of switching

  • Original language description

    Bayesian inference has proven itself to be a practically useful tool for many scientific fields. The exact Bayesian inference is, however, possible in only a narrow class of probabilistic models enjoying the conjugacy principle. It is rather typical that the principle does not hold, and therefore the approximate Bayesian inference methods are taken into account. The present paper compares some of these techniques on a mixture filtering problem. The methods are presented in a generic way, considering that the mixture components are members of the exponential family of probability distributions and that the Markov model of switching between the mixture components is known. A particular instance of the methods is given for a mixture of normal linear state space models, and experiments evaluating the estimation precision and computational time are performed.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/LQ1601" target="_blank" >LQ1601: CEITEC 2020</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 17th International Carpathian Control Conference, ICCC 2016

  • ISBN

    978-1-4673-8606-7

  • ISSN

  • e-ISSN

  • Number of pages

    7

  • Pages from-to

    545-551

  • Publisher name

    Institute of Electrical and Electronics Engineers

  • Place of publication

    Tatranska Lomnica

  • Event location

    Tatranská Lomnica

  • Event date

    May 29, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000389829000102