All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

DNA intracellular delivery into 3T3 cell line using fluorescence magnetic ferumoxide nanoparticles

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F18%3APU128180" target="_blank" >RIV/00216305:26220/18:PU128180 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-981-10-9023-3_27" target="_blank" >https://link.springer.com/chapter/10.1007/978-981-10-9023-3_27</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-981-10-9023-3_27" target="_blank" >10.1007/978-981-10-9023-3_27</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    DNA intracellular delivery into 3T3 cell line using fluorescence magnetic ferumoxide nanoparticles

  • Original language description

    Gene delivery is a widespread strategy in current experimental medicine. In this work, we report a method for low-toxic intracellular DNA vector delivery and post transfection localisation of this vector in mouse embryonic fibroblast cell lines. The surface of modified ferumoxide nanoparticles conjugated with Rhodamine B isothiocyanate (FeNV-Rh) was modified with linear polyethyleneimine and medium molecular weight chitosan to increase Accelerated Sensor of Action Potentials DNA vector adhesion. The size of the FeNV-Rh/DNA transfection complex was studied using dynamic light scattering (DLS) and scanning electron microscopy (SEM) techniques. The transfection complex internalisation of plasmid expression and FeNV-Rh, and stability of rhodamine fluorescence in intracellular space were observed at time periods 6, 12, 24 and 48 h post transfection. Results showed high transfection complex intracellular biocompatibility—cell viability after Rh-MNP labelling was higher than 97% 24 h after transfection, and higher than 95% after the next 24 h. Selective FeNV-Rh localisation in the lysosomes was quantified. More than 82% of nanoparticles were localised in the lysosomes 12 h post transfection and 94% of lysosomes had a significant and long-term deposit of nanoparticles. DNA vector expression was visible in >65% of the cells and precise protein localisation on the cell membrane was confirmed using confocal microscopy.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20602 - Medical laboratory technology (including laboratory samples analysis; diagnostic technologies) (Biomaterials to be 2.9 [physical characteristics of living material as related to medical implants, devices, sensors])

Result continuities

  • Project

    <a href="/en/project/LO1401" target="_blank" >LO1401: Interdisciplinary Research of Wireless Technologies</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    World Congress on Medical Physics and Biomedical Engineering 2018

  • ISBN

    978-981-10-9023-3

  • ISSN

    1680-0737

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    149-153

  • Publisher name

    Springer

  • Place of publication

    Singapore

  • Event location

    Prague

  • Event date

    Jun 3, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000449744300027