All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Feature space reduction as data preprocessing for the anomaly detection

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F21%3APU140623" target="_blank" >RIV/00216305:26220/21:PU140623 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.fekt.vut.cz/conf/EEICT/archiv/sborniky/EEICT_2021_sbornik_1.pdf" target="_blank" >https://www.fekt.vut.cz/conf/EEICT/archiv/sborniky/EEICT_2021_sbornik_1.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Feature space reduction as data preprocessing for the anomaly detection

  • Original language description

    In this paper, we present two pipelines in order to reduce the feature space for anomaly detection using the One Class SVM. As a first stage of both pipelines, we compare the performance of three convolutional autoencoders. We use the PCA method together with t-SNE as the first pipeline and the reconstruction errors based method as the second. Both methods have potential for the anomaly detection, but the reconstruction error metrics prove to be more robust for this task. We show that the convolutional autoencoder architecture doesn't have a significant effect for this task and we prove the potential of our approach on the real world dataset.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20202 - Communication engineering and systems

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings I of the 27th Conference STUDENT EEICT 2021

  • ISBN

    978-80-214-5942-7

  • ISSN

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    415-419

  • Publisher name

    Vysoké učené Technické, Fakulta elektrotechniky a komunikačních technologií

  • Place of publication

    Brno

  • Event location

    Brno

  • Event date

    Apr 27, 2021

  • Type of event by nationality

    CST - Celostátní akce

  • UT code for WoS article