Feature space reduction as data preprocessing for the anomaly detection
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F21%3APU140623" target="_blank" >RIV/00216305:26220/21:PU140623 - isvavai.cz</a>
Result on the web
<a href="https://www.fekt.vut.cz/conf/EEICT/archiv/sborniky/EEICT_2021_sbornik_1.pdf" target="_blank" >https://www.fekt.vut.cz/conf/EEICT/archiv/sborniky/EEICT_2021_sbornik_1.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Feature space reduction as data preprocessing for the anomaly detection
Original language description
In this paper, we present two pipelines in order to reduce the feature space for anomaly detection using the One Class SVM. As a first stage of both pipelines, we compare the performance of three convolutional autoencoders. We use the PCA method together with t-SNE as the first pipeline and the reconstruction errors based method as the second. Both methods have potential for the anomaly detection, but the reconstruction error metrics prove to be more robust for this task. We show that the convolutional autoencoder architecture doesn't have a significant effect for this task and we prove the potential of our approach on the real world dataset.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20202 - Communication engineering and systems
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings I of the 27th Conference STUDENT EEICT 2021
ISBN
978-80-214-5942-7
ISSN
—
e-ISSN
—
Number of pages
5
Pages from-to
415-419
Publisher name
Vysoké učené Technické, Fakulta elektrotechniky a komunikačních technologií
Place of publication
Brno
Event location
Brno
Event date
Apr 27, 2021
Type of event by nationality
CST - Celostátní akce
UT code for WoS article
—