Finding the optimal number of low dimension with locally linear embedding algorithm
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F21%3APU142871" target="_blank" >RIV/00216305:26220/21:PU142871 - isvavai.cz</a>
Result on the web
<a href="https://www.researchgate.net/publication/340639579_Finding_the_optimal_number_of_low_dimension_with_locally_linear_embedding_algorithm" target="_blank" >https://www.researchgate.net/publication/340639579_Finding_the_optimal_number_of_low_dimension_with_locally_linear_embedding_algorithm</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3233/JCM-204198" target="_blank" >10.3233/JCM-204198</a>
Alternative languages
Result language
angličtina
Original language name
Finding the optimal number of low dimension with locally linear embedding algorithm
Original language description
1) The problem this paper is going to solve is how to determine the optimal number of dimension when using dimensionality reduction methods, and in this paper, we mainly use local linear embedding (LLE) method as example. 2) The solution proposed is on the condition of the parameter k in LLE is set in advance. Firstly, we select the parameter k, and compute the distance matrix of each feature in the source data and in the data after dimensionality reduction. Then, we use the Log-Euclidean metric to compute the divergence of the distance matrix between the features in the original data and in the low-dimensional data. Finally, the optimal low dimension is determined by the minimum Log-Euclidean metric. 3) The performances are verified by a public dataset and a handwritten digit dataset experiments and the results show that the dimension found by the method is better than other dimension number when classifying the dataset.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20202 - Communication engineering and systems
Result continuities
Project
<a href="/en/project/8JCH1067" target="_blank" >8JCH1067: Joint research of health diagnosis and advanced analysis based on ophthalmological medical data</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Computational Methods in Sciences and Engineering
ISSN
1472-7978
e-ISSN
—
Volume of the periodical
20
Issue of the periodical within the volume
4
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
11
Pages from-to
1163-1173
UT code for WoS article
000611730000012
EID of the result in the Scopus database
2-s2.0-85100584673