All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Finding the optimal number of low dimension with locally linear embedding algorithm

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F21%3APU142871" target="_blank" >RIV/00216305:26220/21:PU142871 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.researchgate.net/publication/340639579_Finding_the_optimal_number_of_low_dimension_with_locally_linear_embedding_algorithm" target="_blank" >https://www.researchgate.net/publication/340639579_Finding_the_optimal_number_of_low_dimension_with_locally_linear_embedding_algorithm</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3233/JCM-204198" target="_blank" >10.3233/JCM-204198</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Finding the optimal number of low dimension with locally linear embedding algorithm

  • Original language description

    1) The problem this paper is going to solve is how to determine the optimal number of dimension when using dimensionality reduction methods, and in this paper, we mainly use local linear embedding (LLE) method as example. 2) The solution proposed is on the condition of the parameter k in LLE is set in advance. Firstly, we select the parameter k, and compute the distance matrix of each feature in the source data and in the data after dimensionality reduction. Then, we use the Log-Euclidean metric to compute the divergence of the distance matrix between the features in the original data and in the low-dimensional data. Finally, the optimal low dimension is determined by the minimum Log-Euclidean metric. 3) The performances are verified by a public dataset and a handwritten digit dataset experiments and the results show that the dimension found by the method is better than other dimension number when classifying the dataset.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20202 - Communication engineering and systems

Result continuities

  • Project

    <a href="/en/project/8JCH1067" target="_blank" >8JCH1067: Joint research of health diagnosis and advanced analysis based on ophthalmological medical data</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Computational Methods in Sciences and Engineering

  • ISSN

    1472-7978

  • e-ISSN

  • Volume of the periodical

    20

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    11

  • Pages from-to

    1163-1173

  • UT code for WoS article

    000611730000012

  • EID of the result in the Scopus database

    2-s2.0-85100584673