All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Bounded Solutions of a Triangular System of Two Nonlinear Discrete Equations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F22%3APU144279" target="_blank" >RIV/00216305:26220/22:PU144279 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1063/5.0081826" target="_blank" >https://doi.org/10.1063/5.0081826</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/5.0081826" target="_blank" >10.1063/5.0081826</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Bounded Solutions of a Triangular System of Two Nonlinear Discrete Equations

  • Original language description

    A nonlinear triangular system of discrete equations u_1(k + 1) = q_1(k)u^p_1 (k), u_2(k + 1) = q_2(k)u^r_1(k)u^t_2(k) is considered where q_i: {a, a + 1,...} → (0, ∞), i = 1, 2 are given functions, a is a fixed positive integer and p, r, t are positive numbers. Sufficient conditions are given for the existence of a solution u = (u_1, u_2): {a, a + 1,...} → R × R such that its coordinates u_i, i = 1, 2 are between two given functions b_i, c_i: {a, a + 1,...} → R satisfying 0 ≤ b_i(k) < c_i(k) for every k ∈ {a, a + 1,...}.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    ICNAAM 2020 PROCEEDINGS - AIP CP Volume 2425

  • ISBN

    978-0-7354-4182-8

  • ISSN

    0094-243X

  • e-ISSN

  • Number of pages

    4

  • Pages from-to

    „270008-1“-„270008-4“

  • Publisher name

    AIP

  • Place of publication

    Melville (USA)

  • Event location

    Rhodes, Greece

  • Event date

    Sep 17, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article