SIFT and SURF based feature extraction for the anomaly detection
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F22%3APU144417" target="_blank" >RIV/00216305:26220/22:PU144417 - isvavai.cz</a>
Result on the web
<a href="https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2022_sbornik_1.pdf" target="_blank" >https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2022_sbornik_1.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
SIFT and SURF based feature extraction for the anomaly detection
Original language description
In this paper, we suggest a way to use SIFT and SURF algorithms to extract the image features for anomaly detection. We use those feature vectors to train various classifiers on a real-world dataset in the semi-supervised (with a small number of faulty samples) manner with a large number of classifiers and in the one-class (with no faulty samples) manner using the SVDD and SVM classifier. We prove, that the SIFT and SURF algorithms could be used as feature extractors, that they could be used to train a semi-supervised and one-class classifier with an accuracy around 89% and that the performance of the one-class classifier could be comparable to the semi-supervised one. We also made our dataset and source code publicly available.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
20205 - Automation and control systems
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů