Robotic platform equipped with machine learning
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F22%3APU144582" target="_blank" >RIV/00216305:26220/22:PU144582 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S2405896322003780" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2405896322003780</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ifacol.2022.06.063" target="_blank" >10.1016/j.ifacol.2022.06.063</a>
Alternative languages
Result language
angličtina
Original language name
Robotic platform equipped with machine learning
Original language description
Automatic lines equipped with stationary robots are a key element of the industry. The robots are integrated into production lines, to meet basic, repetitive operations, with a finite degree of variability in internal programs. Reprogramming in terms of, for example, changing a manufactured, manipulated part is time-consuming and cost-effective. However, the development of today's machine learning algorithms is only carefully integrated in this market segment. Manufacturers do not provide their closed systems with a sufficient degree of programming variability. The solution tries to outline this work, which complements the standard industrial robot with a cognitive interface. Such a robot is able to learn new programs and make production changes on the fly.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20205 - Automation and control systems
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
17th IFAC INTERNATIONAL CONFERENCE on PROGRAMMABLE DEVICES and EMBEDDED SYSTEMS - PDeS 2022
ISBN
—
ISSN
2405-8963
e-ISSN
—
Number of pages
6
Pages from-to
380-386
Publisher name
Elsevier
Place of publication
Sarajevo
Event location
Sarajevo
Event date
May 17, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000836195400022