Multiplicity of concentrating solutions for (p, q)-Schrödinger equations with lack of compactness
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU151291" target="_blank" >RIV/00216305:26220/24:PU151291 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/content/pdf/10.1007/s11856-024-2619-8.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1007/s11856-024-2619-8.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11856-024-2619-8" target="_blank" >10.1007/s11856-024-2619-8</a>
Alternative languages
Result language
angličtina
Original language name
Multiplicity of concentrating solutions for (p, q)-Schrödinger equations with lack of compactness
Original language description
We study the multiplicity of concentrating solutions for the following class of (p, q)-Laplacian problems (Formula presented.) where ε > 0 is a small parameter, γ∈{0,1},1<p<q<N,q∗=NqN−q is the critical Sobolev exponent, Δsu=div(∣∇u∣s−2∇u), with s ∈ {p, q}, is the s-Laplacian operator, V: ℝN → ℝ is a positive continuous potential such that inf∂ΛV > infΛV for some bounded open set Λ ⊂ ℝN, and f: ℝ → ℝ is a continuous nonlinearity with subcritical growth. The main results are obtained by combining minimax theorems, penalization technique and Ljusternik–Schnirelmann category theory. We also provide a multiplicity result for a supercritical version of the above problem by combining a truncation argument with a Moser-type iteration. As far as we know, all these results are new.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ISRAEL JOURNAL OF MATHEMATICS
ISSN
0021-2172
e-ISSN
1565-8511
Volume of the periodical
262
Issue of the periodical within the volume
1
Country of publishing house
IL - THE STATE OF ISRAEL
Number of pages
49
Pages from-to
399-447
UT code for WoS article
001231083600008
EID of the result in the Scopus database
2-s2.0-85191882210