All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Bayesian joint-sequence models for grapheme-to-phoneme conversion

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F17%3APU126426" target="_blank" >RIV/00216305:26230/17:PU126426 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.fit.vut.cz/research/publication/11469/" target="_blank" >https://www.fit.vut.cz/research/publication/11469/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICASSP.2017.7952674" target="_blank" >10.1109/ICASSP.2017.7952674</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Bayesian joint-sequence models for grapheme-to-phoneme conversion

  • Original language description

    We describe a fully Bayesian approach to grapheme-to-phoneme conversion based on the joint-sequence model (JSM). Usually, standard smoothed n-gram language models (LM, e.g. Kneser-Ney) are used with JSMs to model graphone sequences (joint graphemephoneme pairs). However, we take a Bayesian approach using a hierarchical Pitman-Yor-Process LM. This provides an elegant alternative to using smoothing techniques to avoid over-training. No held-out sets and complex parameter tuning is necessary, and several convergence problems encountered in the discounted Expectation- Maximization (as used in the smoothed JSMs) are avoided. Every step is modeled by weighted finite state transducers and implemented with standard operations from the OpenFST toolkit. We evaluate our model on a standard data set (CMUdict), where it gives comparable results to the previously reported smoothed JSMs in terms of phoneme-error rate while requiring a much smaller training/ testing time. Most importantly, our model can be used in a Bayesian framework and for (partly) un-supervised training.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    N - Vyzkumna aktivita podporovana z neverejnych zdroju

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of ICASSP 2017

  • ISBN

    978-1-5090-4117-6

  • ISSN

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    2836-2840

  • Publisher name

    IEEE Signal Processing Society

  • Place of publication

    New Orleans

  • Event location

    New Orleans, USA

  • Event date

    Mar 5, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000414286203002