Bayesian joint-sequence models for grapheme-to-phoneme conversion
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F17%3APU126426" target="_blank" >RIV/00216305:26230/17:PU126426 - isvavai.cz</a>
Result on the web
<a href="https://www.fit.vut.cz/research/publication/11469/" target="_blank" >https://www.fit.vut.cz/research/publication/11469/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICASSP.2017.7952674" target="_blank" >10.1109/ICASSP.2017.7952674</a>
Alternative languages
Result language
angličtina
Original language name
Bayesian joint-sequence models for grapheme-to-phoneme conversion
Original language description
We describe a fully Bayesian approach to grapheme-to-phoneme conversion based on the joint-sequence model (JSM). Usually, standard smoothed n-gram language models (LM, e.g. Kneser-Ney) are used with JSMs to model graphone sequences (joint graphemephoneme pairs). However, we take a Bayesian approach using a hierarchical Pitman-Yor-Process LM. This provides an elegant alternative to using smoothing techniques to avoid over-training. No held-out sets and complex parameter tuning is necessary, and several convergence problems encountered in the discounted Expectation- Maximization (as used in the smoothed JSMs) are avoided. Every step is modeled by weighted finite state transducers and implemented with standard operations from the OpenFST toolkit. We evaluate our model on a standard data set (CMUdict), where it gives comparable results to the previously reported smoothed JSMs in terms of phoneme-error rate while requiring a much smaller training/ testing time. Most importantly, our model can be used in a Bayesian framework and for (partly) un-supervised training.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of ICASSP 2017
ISBN
978-1-5090-4117-6
ISSN
—
e-ISSN
—
Number of pages
5
Pages from-to
2836-2840
Publisher name
IEEE Signal Processing Society
Place of publication
New Orleans
Event location
New Orleans, USA
Event date
Mar 5, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000414286203002