All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Automated Circuit Approximation Method Driven by Data Distribution

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F19%3APU132054" target="_blank" >RIV/00216305:26230/19:PU132054 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.fit.vut.cz/research/publication/11821/" target="_blank" >https://www.fit.vut.cz/research/publication/11821/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.23919/DATE.2019.8714977" target="_blank" >10.23919/DATE.2019.8714977</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Automated Circuit Approximation Method Driven by Data Distribution

  • Original language description

    We propose an application-tailored data-driven fully automated method for functional approximation of combinational circuits. We demonstrate how an application-level error metric such as the classification accuracy can be translated to a component-level error metric needed for an efficient and fast search in the space of approximate low-level components that are used in the application. This is possible by employing a weighted mean error distance (WMED) metric for steering the circuit approximation process which is conducted by means of genetic programming. WMED introduces a set of weights (calculated from the data distribution measured on a selected signal in a given application) determining the importance of each input vector for the approximation process. The method is evaluated using synthetic benchmarks and application-specific approximate MAC (multiply-and-accumulate) units that are designed to provide the best trade-offs between the classification accuracy and power consumption of two image classifiers based on neural networks.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA19-10137S" target="_blank" >GA19-10137S: Designing and exploiting libraries of approximate circuits</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Design, Automation and Test in Europe Conference

  • ISBN

    978-3-9819263-2-3

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    96-101

  • Publisher name

    European Design and Automation Association

  • Place of publication

    Florence

  • Event location

    Florencie

  • Event date

    Mar 25, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000470666100017