Turbidimetry and fluorescence study of hyaluronan-surfactant nanoparticles formation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26310%2F17%3APU136157" target="_blank" >RIV/00216305:26310/17:PU136157 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Turbidimetry and fluorescence study of hyaluronan-surfactant nanoparticles formation
Original language description
This paper deals with electrostatic association of cationic micelles (CTAB or Septonex) with hyaluronan. Hyaluronan as negatively charged polyelectrolyte can interact with positively charged surfactant micelles via electrostatic interactions to form nano-core-shell like aggregates. These self-assembly nanoparticles can solubilize hydrophobic active substances and therefore, they are potential carriers in drug delivery applications. The cationic micelle/hyaluronan complexes were studied using turbidimetry and fluorescence spectroscopy method. Turbidimetric titration was chosen as an indicator of component aggregation which is related to the loss of transmitted light intensity due to the scattering effect. Fluorescent probe pyrene was selected for spectroscopy experiments because of its unique sensitivity to polarity of the medium, so this fluorescence method was used as an indicator of presence of hydrophobic domains in the system. Effect of components concentration and molecular weight of hyaluronan were evaluated. Results of turbidimetry revealed that aggregates formation (turbidity increasing) depends especially on a charge ratio of surfactant molecules and hyaluronan carboxyl groups. It was found a difference in association of low molecular weight and high molecular weight of hyaluronan. Fluorescence results confirmed presence and stability of micellar aggregates in studied systems.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10403 - Physical chemistry
Result continuities
Project
<a href="/en/project/LO1211" target="_blank" >LO1211: Materials Research Centre at FCH BUT- Sustainability and Development</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
8TH INTERNATIONAL CONFERENCE ON NANOMATERIALS - RESEARCH & APPLICATION (NANOCON 2016)
ISBN
978-80-87294-71-0
ISSN
—
e-ISSN
—
Number of pages
5
Pages from-to
439-443
Publisher name
Tanger, s.r.o.
Place of publication
Ostrava
Event location
Brno
Event date
Oct 19, 2016
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000410656100077