All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Toxicity evaluation of monodisperse PEGylated magnetic nanoparticles for nanomedicine

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26310%2F19%3APU136161" target="_blank" >RIV/00216305:26310/19:PU136161 - isvavai.cz</a>

  • Alternative codes found

    RIV/61389013:_____/19:00506160

  • Result on the web

    <a href="https://www.tandfonline.com/doi/abs/10.1080/17435390.2018.1555624?scroll=top&needAccess=true&journalCode=inan20" target="_blank" >https://www.tandfonline.com/doi/abs/10.1080/17435390.2018.1555624?scroll=top&needAccess=true&journalCode=inan20</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1080/17435390.2018.1555624" target="_blank" >10.1080/17435390.2018.1555624</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Toxicity evaluation of monodisperse PEGylated magnetic nanoparticles for nanomedicine

  • Original language description

    Innovative nanotechnology aims to develop particles that are small, monodisperse, smart, and do not cause unintentional side effects. Uniform magnetic Fe3O4 nanoparticles (12nm in size) were prepared by thermal decomposition of iron(III) oleate. To make them colloidally stable and dispersible in water and cell culture medium, they were modified with phosphonic acid- (PA) and hydroxamic acid (HA)-terminated poly(ethylene glycol) yielding PA-PEG@Fe3O4 and HA-PEG@Fe3O4 nanoparticles; conventional gamma-Fe2O3 particles were prepared as a control. Advanced techniques were used to evaluate the properties and safety of the particles. Completeness of the nanoparticle coating was tested by real-time polymerase chain reaction. Interaction of the particles with primary human peripheral blood cells, cellular uptake, cytotoxicity, and immunotoxicity were also investigated. Amount of internalized iron in peripheral blood mononuclear cells was 72, 38, and 25pg Fe/cell for HA-PEG@Fe3O4, gamma-Fe2O3, and PA-PEG@Fe3O4, respectively. Nanoparticles were localized within the cytoplasm and in the extracellular space. No cytotoxic effect of both PEGylated nanoparticles was observed (0.12-75 mu g/cm(2)) after 24 and 72-h incubation. Moreover, no suppressive effect was found on the proliferative activity of T-lymphocytes and T-dependent B-cell response, phagocytic activity of monocytes and granulocytes, and respiratory burst of phagocytes. Similarly, no cytotoxic effect of gamma-Fe2O3 particles was observed. However, they suppressed the proliferative activity of T-lymphocytes (75 mu g/cm(2), 72h) and also decreased the phagocytic activity of monocytes (15 mu g/cm(2), 24h; 3-75 mu g/cm(2), 72h). We thus show that newly developed particles have great potential especially in cancer diagnostics and therapy

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    21001 - Nano-materials (production and properties)

Result continuities

  • Project

    <a href="/en/project/LO1211" target="_blank" >LO1211: Materials Research Centre at FCH BUT- Sustainability and Development</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    NANOTOXICOLOGY

  • ISSN

    1743-5390

  • e-ISSN

    1743-5404

  • Volume of the periodical

    13

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    17

  • Pages from-to

    510-526

  • UT code for WoS article

    000477976100006

  • EID of the result in the Scopus database

    2-s2.0-85060941650