All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Surface topography affects the nanoindentation data

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26310%2F22%3APU146120" target="_blank" >RIV/00216305:26310/22:PU146120 - isvavai.cz</a>

  • Alternative codes found

    RIV/68081731:_____/22:00557264

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0040609022000268" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0040609022000268</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.tsf.2022.139105" target="_blank" >10.1016/j.tsf.2022.139105</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Surface topography affects the nanoindentation data

  • Original language description

    The near-surface mechanical properties of thin films as well as bulk materials are among the key parameters important for their application, and instrumented nanoindentation is a standard technique for determining these mechanical properties. However, it is known that the surface topography of the characterized materials may affect the nanoindentation data when a sharp indenter for small penetration depths (displacements) is used. A thin film of hydrogenated amorphous silicon carbide with a thickness of 1.0 μm was deposited on a silicon wafer by plasma-enhanced chemical vapour deposition. The cyclic nanoindentation was used to construct a depth profile of mechanical properties for the flat surface (0.5 nm roughness) of the thin film, which made it possible to determine its modulus of elasticity of 83 GPa and hardness of 8.6 GPa unaffected by the silicon substrate. Grains with a spherical cap geometry with a typical radius of 0.5 µm and a height of 60 nm are distributed along the flat surface of the film. The grains have the same mechanical properties as the deposited film. Depth profiles of mechanical properties were determined for different types of contact between the Berkovich indenter with a radius of 50 nm and the selected grain (grain top, grain foot, two or three grains); i.e. for these measurements the following applied - the radius of the tip curvature was less than grain radii (RBerkovich < Rgrain). Residual imprints after nanoindentation measurements were carefully observed by atomic force microscopy and scanning electron microscopy. The near-surface mechanical properties were significantly affected by the surface topography, and the determined modulus of elasticity and hardness were crucially under- or overestimated in the range of 50% to 100% compared to the real values. The nature of these deviations was discussed. The solution is to use cyclic nanoindentation performed on the flat surfaces or on the top of grains, followed by extrapolation of the dept

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20506 - Coating and films

Result continuities

  • Project

    <a href="/en/project/GA16-09161S" target="_blank" >GA16-09161S: Synthesis of multifunctional plasma polymers for polymer composites without interfaces</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Thin Solid Films

  • ISSN

    0040-6090

  • e-ISSN

  • Volume of the periodical

    745

  • Issue of the periodical within the volume

    139105

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    7

  • Pages from-to

    1-7

  • UT code for WoS article

    000784446100005

  • EID of the result in the Scopus database

    2-s2.0-85123347297