The Dirichlet boundary value problems for strongly singular higher-order nonlinear functional-differential equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26510%2F13%3APU108627" target="_blank" >RIV/00216305:26510/13:PU108627 - isvavai.cz</a>
Alternative codes found
RIV/67985840:_____/13:00391446
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
The Dirichlet boundary value problems for strongly singular higher-order nonlinear functional-differential equations
Original language description
The a priori boundedness principle is proved for the Dirichlet boundary value problems for strongly singular higher-order nonlinear functional-differential equations. Several sufficient conditions of solvability of the Dirichlet problem under consideration are derived from the a priori boundedness principle. The proof of the a priori boundedness principle is based on the Agarwal-Kiguradze type theorems, which guarantee the existence of the Fredholm property for strongly singular higher-order linear differential equations with argument deviations under the two-point conjugate and right-focal boundary conditions.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Czechoslovak Mathematical Journal
ISSN
0011-4642
e-ISSN
—
Volume of the periodical
68
Issue of the periodical within the volume
1
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
28
Pages from-to
235-263
UT code for WoS article
—
EID of the result in the Scopus database
—