The focal boundary value problem for strongly singular higher-order nonlinear functional-differential equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F15%3A00446810" target="_blank" >RIV/67985840:_____/15:00446810 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1186/s13661-014-0277-1" target="_blank" >http://dx.doi.org/10.1186/s13661-014-0277-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1186/s13661-014-0277-1" target="_blank" >10.1186/s13661-014-0277-1</a>
Alternative languages
Result language
angličtina
Original language name
The focal boundary value problem for strongly singular higher-order nonlinear functional-differential equations
Original language description
The a priori boundedness principle is proved for the two-point right-focal boundary value problems for strongly singular higher-order nonlinear functional-differential equations. Several sufficient conditions of solvability of the two-point right-focal problem under consideration are derived from the a priori boundedness principle. The proof of the a priori boundedness principle is based on Agarwal-Kiguradze type theorems, which guarantee the existence of the Fredholm property for strongly singular higher-order linear differential equations with argument deviations under the two-point right-focal boundary conditions.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Boundary Value Problems
ISSN
1687-2770
e-ISSN
—
Volume of the periodical
2015
Issue of the periodical within the volume
January
Country of publishing house
US - UNITED STATES
Number of pages
21
Pages from-to
—
UT code for WoS article
000369103200001
EID of the result in the Scopus database
2-s2.0-84961388974