The nonlocal boundary value problems for strongly singular higher-order nonlinear functional-differential equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F15%3A00457320" target="_blank" >RIV/67985840:_____/15:00457320 - isvavai.cz</a>
Alternative codes found
RIV/00216305:26510/15:PU118018
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
The nonlocal boundary value problems for strongly singular higher-order nonlinear functional-differential equations
Original language description
A priori boundedness principle is proven for the nonlocal boundary value problems for strongly singular higher-order nonlinear functional-differential equations. Several sucient conditions of solvability of the Dirichlet problem under consideration are derived from the a priori boundedness principle. The proof of the a priori boundedness principle is based on the Agarwal{Kiguradze type theorems, which guarantee the existence of the Fredholm property for strongly singular higher-order linear differentialequations with argument deviations under the nonlocal boundary conditions.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Italian Journal of Pure and Applied Mathematics
ISSN
1126-8042
e-ISSN
—
Volume of the periodical
—
Issue of the periodical within the volume
35
Country of publishing house
IT - ITALY
Number of pages
28
Pages from-to
23-50
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-84960355489