On the construction of solutions of general linear boundary value problems for systems of functional differential equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26510%2F19%3APU128726" target="_blank" >RIV/00216305:26510/19:PU128726 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On the construction of solutions of general linear boundary value problems for systems of functional differential equations
Original language description
For the linear boundary value problem x'(t)=p(x)(t)+q(t), l(x)=c_0 on the closed interval I in R, where p: C(I, R^n) to L(I, R^n) is a strongly bounded linear operator, l:C(I, R^n) to R^n is the bounded linear functional, q in L(I, R^n) and c_0 in R^n, we describe the method of construction of its solution by the successive approximations by the sequence of the solutions of simplest boundary value problems. We prove the conditions which guarantee convergence of the above mentioned sequences in general and special cases, we prove the stability of the convergence in some sense. Also, for illustration, we solve some typiecal problem in Maple.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA16-03796S" target="_blank" >GA16-03796S: Development of new methods of solving dynamic models of corporate processes management</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Miskolc Mathematical Notes
ISSN
1787-2405
e-ISSN
1787-2413
Volume of the periodical
19
Issue of the periodical within the volume
2
Country of publishing house
HU - HUNGARY
Number of pages
15
Pages from-to
1063-1078
UT code for WoS article
000458493700027
EID of the result in the Scopus database
—