Holographic microscopy in low coherence
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F16%3APU125844" target="_blank" >RIV/00216305:26620/16:PU125844 - isvavai.cz</a>
Result on the web
<a href="https://www.spiedigitallibrary.org/conference-proceedings-of-spie/9718/1/Holographic-microscopy-in-low-coherence/10.1117/12.2209465.pdf?SSO=1" target="_blank" >https://www.spiedigitallibrary.org/conference-proceedings-of-spie/9718/1/Holographic-microscopy-in-low-coherence/10.1117/12.2209465.pdf?SSO=1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1117/12.2209465" target="_blank" >10.1117/12.2209465</a>
Alternative languages
Result language
angličtina
Original language name
Holographic microscopy in low coherence
Original language description
Low coherence of the illumination substantially improves the quality of holographic and quantitative phase imaging (QPI) by elimination of the coherence noise and various artefacts and by improving the lateral resolution compared to the coherent holographic microscopy. Attributes of coherence-controlled holographic microscope (CCHM) designed and built as an off-axis holographic system allowing QPI within the range from complete coherent to incoherent illumination confirmed these expected advantages. Low coherence illumination also furnishes the coherence gating which constraints imaging of some spatial frequencies of an object axially thus forming an optical section in the wide sense. In this way the depth discrimination capability of the microscope is introduced at the price of restricting the axial interval of possible numerical refocusing. We describe theoretically these effects for the whole range of illumination coherence. We also show that the axial refocusing constraints can be overcome using advanced mode of imaging based on mutual lateral shift of reference and object image fields in CCHM. Lowering the spatial coherence of illumination means increasing its numerical aperture. We study how this change of the illumination geometry influences 3D objects QPI and especially the interpretation of live cells QPI in terms of the dry mass density measurement. In this way a strong dependence of the imaging process on the light coherence is demonstrated. The theoretical calculations and numerical simulations are supported by experimental data including a chance of time-lapse watching of live cells even in optically turbid milieu.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10306 - Optics (including laser optics and quantum optics)
Result continuities
Project
<a href="/en/project/GA15-14612S" target="_blank" >GA15-14612S: Advances in incoherent holographic microscopy using photonic modeling and principles of singular optics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
QUANTITATIVE PHASE IMAGING II
ISBN
978-1-62841-952-8
ISSN
0277-786X
e-ISSN
—
Number of pages
7
Pages from-to
„971806-1“-„971806-7“
Publisher name
Neuveden
Place of publication
Neuveden
Event location
San Francisco
Event date
Feb 13, 2016
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000380605300006