Rao-Blackwellized particle Gibbs kernels for smoothing in jump Markov nonlinear models
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F18%3APU128431" target="_blank" >RIV/00216305:26620/18:PU128431 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.23919/ECC.2018.8550408" target="_blank" >http://dx.doi.org/10.23919/ECC.2018.8550408</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.23919/ECC.2018.8550408" target="_blank" >10.23919/ECC.2018.8550408</a>
Alternative languages
Result language
angličtina
Original language name
Rao-Blackwellized particle Gibbs kernels for smoothing in jump Markov nonlinear models
Original language description
Jump Markov nonlinear models (JMNMs) characterize a dynamical system by a finite number of presumably nonlinear and possibly non-Gaussian state-space configurations that switch according to a discrete-valued hidden Markov process. In this context, the smoothing problem - the task of estimating fixed points or sequences of hidden variables given all available data -is of key relevance to many objectives of statistical inference, including the estimation of static parameters. The present paper proposes a particle Gibbs with ancestor sampling (PGAS)-based smoother for JMNMs. The design methodology relies on integrating out the discrete process in order to increase the efficiency through Rao-Blackwellization. The experimental evaluation illustrates that the proposed method achieves higher estimation accuracy in less computational time compared to the original PGAS procedure.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/LQ1601" target="_blank" >LQ1601: CEITEC 2020</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 16th European Control Conference, ECC 2018
ISBN
9783952426999
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
2466-2471
Publisher name
Institute of Electrical and Electronics Engineers (IEEE)
Place of publication
neuveden
Event location
Limassol
Event date
Jun 12, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000467725302082