All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Rao-Blackwellized particle Gibbs kernels for smoothing in jump Markov nonlinear models

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F18%3APU128431" target="_blank" >RIV/00216305:26620/18:PU128431 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.23919/ECC.2018.8550408" target="_blank" >http://dx.doi.org/10.23919/ECC.2018.8550408</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.23919/ECC.2018.8550408" target="_blank" >10.23919/ECC.2018.8550408</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Rao-Blackwellized particle Gibbs kernels for smoothing in jump Markov nonlinear models

  • Original language description

    Jump Markov nonlinear models (JMNMs) characterize a dynamical system by a finite number of presumably nonlinear and possibly non-Gaussian state-space configurations that switch according to a discrete-valued hidden Markov process. In this context, the smoothing problem - the task of estimating fixed points or sequences of hidden variables given all available data -is of key relevance to many objectives of statistical inference, including the estimation of static parameters. The present paper proposes a particle Gibbs with ancestor sampling (PGAS)-based smoother for JMNMs. The design methodology relies on integrating out the discrete process in order to increase the efficiency through Rao-Blackwellization. The experimental evaluation illustrates that the proposed method achieves higher estimation accuracy in less computational time compared to the original PGAS procedure.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/LQ1601" target="_blank" >LQ1601: CEITEC 2020</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 16th European Control Conference, ECC 2018

  • ISBN

    9783952426999

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    2466-2471

  • Publisher name

    Institute of Electrical and Electronics Engineers (IEEE)

  • Place of publication

    neuveden

  • Event location

    Limassol

  • Event date

    Jun 12, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000467725302082