Absolute Stability of Neutral Systems with Lurie Type Nonlinearity
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F22%3APU142657" target="_blank" >RIV/00216305:26620/22:PU142657 - isvavai.cz</a>
Result on the web
<a href="https://www.degruyter.com/document/doi/10.1515/anona-2021-0216/html" target="_blank" >https://www.degruyter.com/document/doi/10.1515/anona-2021-0216/html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/anona-2021-0216" target="_blank" >10.1515/anona-2021-0216</a>
Alternative languages
Result language
angličtina
Original language name
Absolute Stability of Neutral Systems with Lurie Type Nonlinearity
Original language description
The paper studies absolute stability of neutral differential nonlinear systems (x) over dot (t) = Ax (T) + Bx (t - tau) +D(x) over dot (T - tau) + bf (sigma(t)), sigma(t) = c(T) x(t), t >= 0 where x is an unknown vector, A, B and D are constant matrices, b and c are column constant vectors, tau > 0 is a constant delay and f is a Lurie-type nonlinear function satisfying Lipschitz condition. Absolute stability is analyzed by a general Lyapunov-Krasovskii functional with the results compared with those previously known.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA19-23815S" target="_blank" >GA19-23815S: Identification of Nonlinear Fractional-Order Dynamical Systems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advances in Nonlinear Analysis
ISSN
2191-9496
e-ISSN
2191-950X
Volume of the periodical
11
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
15
Pages from-to
726-740
UT code for WoS article
000731883000001
EID of the result in the Scopus database
2-s2.0-85122703421