Colorimetric and naked-eye detection of arsenic(iii) using a paper-based colorimetric device decorated with silver nanoparticles
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F22%3APU145578" target="_blank" >RIV/00216305:26620/22:PU145578 - isvavai.cz</a>
Result on the web
<a href="https://pubs.rsc.org/en/content/articlelanding/2022/RA/D2RA02820D" target="_blank" >https://pubs.rsc.org/en/content/articlelanding/2022/RA/D2RA02820D</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/d2ra02820d" target="_blank" >10.1039/d2ra02820d</a>
Alternative languages
Result language
angličtina
Original language name
Colorimetric and naked-eye detection of arsenic(iii) using a paper-based colorimetric device decorated with silver nanoparticles
Original language description
Arsenic (As) as a metal ion has long-term toxicity and its presence in water poses a serious threat to the environment and human health. So, rapid and accurate recognition of traces of As is of particular importance in environmental and natural resources. In this study, a fast and sensitive colorimetric method was developed using silver nano prisms (Ag NPrs), cysteine-capped Ag NPrs, and methionine-capped Ag NPrs for accurate detection of arsenic-based on transforming the morphology of silver nanoparticles (AgNPs). The generated Ag atoms from the redox reaction of silver nitrate and As(iii) were deposited on the surface of Ag NPrs and their morphology changed to a circle. The morphological changes resulted in a change in the color of the nanoparticles from blue to purple, which was detectable by the naked eye. The rate of change was proportional to the concentration of arsenic. The changes were also confirmed using UV-Vis absorption spectra and showed a linear relationship between the change in adsorption peak and the concentration of arsenic in the range of 0.0005 to 1 ppm with a lower limit of quantification (LLOQ) of 0.0005 ppm. The proposed probes were successfully used to determine the amount of As(iii) in human urine samples. In addition, modified microfluidic substrates were fabricated with Ag NPrs, Cys-capped Ag NPrs, and methionine-capped Ag NPrs nanoparticles that are capable of arsenic detection in the long-time and can be used in the development of on-site As(iii) detection kits. In addition, silver nanowires (AgNWs) were used as a probe to detect arsenic, but good results were not obtained in human urine specimens and paper microfluidic platforms. In this study, for the first time, AgNPs were developed for optical colorimetric detection of arsenic using paper-based microfluidics. Ag NPrs performed best in both optical and colorimetric techniques. Therefore, they can be a promising option for the development of sensitive, inexpensive, and portable tools
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10400 - Chemical sciences
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
RSC Advances
ISSN
2046-2069
e-ISSN
—
Volume of the periodical
12
Issue of the periodical within the volume
34
Country of publishing house
GB - UNITED KINGDOM
Number of pages
15
Pages from-to
21836-21850
UT code for WoS article
000837425400001
EID of the result in the Scopus database
2-s2.0-85137056423