All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Demolded hollow high aspect-ratio parylene-C micropillars for real-time mechanosensing applications

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F23%3APU146944" target="_blank" >RIV/00216305:26620/23:PU146944 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.webofscience.com/wos/woscc/full-record/WOS:000924683700001" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:000924683700001</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.apmt.2023.101736" target="_blank" >10.1016/j.apmt.2023.101736</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Demolded hollow high aspect-ratio parylene-C micropillars for real-time mechanosensing applications

  • Original language description

    Cells generate mechanical forces to maintain normal cellular function or play a role in developing pathological processes. The mechanical force called the traction force can be estimated from the pillar deflection using a polymeric micropillar array. Here, we develop a transparent membrane of hollow coneshape high aspect ratio (AR) parylene-C micropillars by the molding method. The membrane of the pillar array is exposed after the etching of the silicon mold and the residual silicon serves as the cultivation chamber. The AR and spring constant (k) of micropillars are estimated to AR ≈ 10 and k ≈ 0.349 N·m−1. The spring constant of developing micropillars is 3.5-times decreased compared to cylindrical, non-hollow pillars. This slightly tune the elastic properties of micropillars. The array is further shown as the mechanosensor detecting the change of cellular tension during hyperosmotic stress. The traction force of cancerous PC-3 cells is estimated from pillar deflections by image analysis. Additionally, the cell volume and surface area are measured using a digital holographic microscope (DHM). The results show that the molding technique can be used to develop high AR parylene-C micropillars and that this array can serve as the mechanosensor of cellular processes.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    21001 - Nano-materials (production and properties)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Applied Materials Today

  • ISSN

    2352-9407

  • e-ISSN

  • Volume of the periodical

    31

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    12

  • Pages from-to

    1-12

  • UT code for WoS article

    000924683700001

  • EID of the result in the Scopus database