All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Integrated Circuit Die Level Yield Prediction Using Deep Learning

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F03985181%3A_____%2F22%3AN0000001" target="_blank" >RIV/03985181:_____/22:N0000001 - isvavai.cz</a>

  • Result on the web

    <a href="https://ieeexplore.ieee.org/document/9792526" target="_blank" >https://ieeexplore.ieee.org/document/9792526</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ASMC54647.2022.9792526" target="_blank" >10.1109/ASMC54647.2022.9792526</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Integrated Circuit Die Level Yield Prediction Using Deep Learning

  • Original language description

    P. Lenhard, A. Kovalenko and R. Lenhard, "Integrated Circuit Die Level Yield Prediction Using Deep Learning," 2022 33rd Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC), Saratoga Springs, NY, USA, 2022, pp. 1-6 Abstract—Given the integrated circuits (IC) production scale, the amount of process control monitoring PCM) data enable to develop an efficient algorithm for IC yield prediction at the die-level. Therefore, in addition to cost-effective and time-efficient yield evaluation, the proposed model is able to identify failed dice and low-yield areas on a wafer without any direct electrical die testing. Additionally, for non-parametric random dice failure detection that are untraceable by PCM input based models, an ensemble learning including both PCM and die defect inspection data are described. As Wafer Sort (WS) consumes a lot of time and resources with high associated cost a significant cost reduction can be achieved using smart product routing with selective WS by employing the aforementioned die level predictive model.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

    <a href="/en/project/FW01010089" target="_blank" >FW01010089: Research and development of digital technologies for advanced semiconductor processes</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2022 33rd Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)

  • ISBN

    978-1-6654-9488-5

  • ISSN

    2376-6697

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    1-6

  • Publisher name

    IEEE

  • Place of publication

  • Event location

    Saratoga Springs, NY, USA

  • Event date

    May 2, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article