All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

MoDANet: Multi-task Deep Network for Joint Automatic Modulation Classification and Direction of Arrival Estimation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F25547526%3A_____%2F21%3AN0000004" target="_blank" >RIV/25547526:_____/21:N0000004 - isvavai.cz</a>

  • Result on the web

    <a href="https://ieeexplore.ieee.org/document/9632584" target="_blank" >https://ieeexplore.ieee.org/document/9632584</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/LCOMM.2021.3132018" target="_blank" >10.1109/LCOMM.2021.3132018</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    MoDANet: Multi-task Deep Network for Joint Automatic Modulation Classification and Direction of Arrival Estimation

  • Original language description

    In this letter, a multi-task deep convolutional neural network, namely MoDANet, is proposed to perform modulation classification and DOA estimation simultaneously. In particular, the network architecture is designed with multiple residual modules, which tackle the vanishing gradient problem. The multi-task learning (MTL) efficiency of MoDANet was evaluated with different variants of Y-shaped connection and fine-tuning some hyper-parameters of the deep network. As a result, MoDANet with one shared residual module using more filters, larger filter size, and longer signal length can achieve better performance of modulation classification and DOA estimation, but those might result in higher computational complexity. Therefore, choosing these parameters to attain a good trade-off between accuracy and computational cost is important, especially for resource-constrained devices. The network is investigated with two typical propagation channel models, including Pedestrian A and Vehicular A, to show the effect of those channels on the efficiency of the network. Remarkably, our work is the first DL-based MTL model to handle two unrelated tasks of modulation classification and DOA estimation.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    20202 - Communication engineering and systems

Result continuities

  • Project

    <a href="/en/project/TM02000035" target="_blank" >TM02000035: NEO classification of signals (NEOCLASSIG) for radio surveillance systems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    C - Předmět řešení projektu podléhá obchodnímu tajemství (§ 504 Občanského zákoníku), ale název projektu, cíle projektu a u ukončeného nebo zastaveného projektu zhodnocení výsledku řešení projektu (údaje P03, P04, P15, P19, P29, PN8) dodané do CEP, jsou upraveny tak, aby byly zveřejnitelné.

Data specific for result type

  • Name of the periodical

    MoDANet: Multi-Task Deep Network for Joint Automatic Modulation Classification and Direction of Arrival Estimation

  • ISSN

    1089-7798

  • e-ISSN

    1558-2558

  • Volume of the periodical

    neuveden

  • Issue of the periodical within the volume

    01 December 2021

  • Country of publishing house

    VN - VIET NAM

  • Number of pages

    5

  • Pages from-to

    335 - 339

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85120580975