Atmospheric corrosion of structural metals ? methods of prediction of corrosion attack
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F25794787%3A_____%2F08%3A%230000321" target="_blank" >RIV/25794787:_____/08:#0000321 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Atmospheric corrosion of structural metals ? methods of prediction of corrosion attack
Original language description
Corrosion of structural metals exposed under atmospheric conditions depends on various factors such as local temperature, relative humidity, amount of precipitation, pH of rainfall, concentration of main pollutants (SO42-, Cl-, NOX, O3, etc.) and exposition time. An application of Artificial Intelligence in the form of Neural Networks (ANN) seems to be sophisticated way for prediction of atmospheric corrosion of structural metals. In cooperation of SVÚOM Ltd. Prague and TU Kosice prototype using live prediction artificial neural models was developed to assess corrosion rate of carbon steel based on long-term exposure data.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
JK - Corrosion and material surfaces
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2008
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Eurocorr 2008
ISBN
—
ISSN
0043-1648
e-ISSN
—
Number of pages
8
Pages from-to
—
Publisher name
—
Place of publication
—
Event location
Edinburgh
Event date
Jan 1, 2008
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—