Exploitation of Artificial Intelligence Methods for Prediction of Atmospheric Corrosion
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F12%3A86082130" target="_blank" >RIV/61989100:27240/12:86082130 - isvavai.cz</a>
Alternative codes found
RIV/61989100:27360/12:86082130
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Exploitation of Artificial Intelligence Methods for Prediction of Atmospheric Corrosion
Original language description
The contribution deals with the use of artificial neural networks for prediction of corrosion loss of structural carbon steel. Nowadays there is certain chance to predict a corrosion loss of materials by artificial intelligence methods, especially by neural networks. A model of neural network for prediction of corrosion loss of structural carbon steel based on the input environmental parameters affecting the corrosion of metals in the atmospheric environment (temperature, relative humidity, air pollution by sulphur dioxide and the exposition time) was created. The model enables to predict corrosion loss of steel with a sufficiently small error.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
JK - Corrosion and material surfaces
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/FR-TI1%2F319" target="_blank" >FR-TI1/319: *Development of New Progressive Tools and Systems of Dependability Control Support of Primary Cooling on Slab Device of Continuous Casting for Quality Improvement of Demanding Flat Products</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Deffect and Diffusion Forum
ISSN
1662-9507
e-ISSN
—
Volume of the periodical
326-328
Issue of the periodical within the volume
1
Country of publishing house
CH - SWITZERLAND
Number of pages
4
Pages from-to
65-68
UT code for WoS article
—
EID of the result in the Scopus database
—