Exploitation of Artificial Intelligence Methods for Prediction of Atmospheric Corrosion
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F25794787%3A_____%2F12%3A%230000425" target="_blank" >RIV/25794787:_____/12:#0000425 - isvavai.cz</a>
Alternative codes found
RIV/25794787:_____/12:#0000480
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Exploitation of Artificial Intelligence Methods for Prediction of Atmospheric Corrosion
Original language description
The contribution deals with the use of artificial neural networks for prediction of corrosion loss of structural carbon steel. Nowadays there is certain chance to predict a corrosion loss of materials by artificial intelligence methods, especially by neural networks. A model of neural network for prediction of corrosion loss of structural carbon steel based on the input environmental parameters affecting the corrosion of metals in the atmospheric environment (temperature, relative humidity, air pollution by sulphur dioxide and the exposition time) was created. The model enables to predict corrosion loss of steel with a sufficiently small error.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
JK - Corrosion and material surfaces
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Sborník 7th International Conference on Diffusion in Solids and Liquids: Mass Transfer, Heat Transfer and Microstructure and Properties DSL-2011
ISBN
978-3-03785-400-6
ISSN
—
e-ISSN
—
Number of pages
4
Pages from-to
65-68
Publisher name
IRONIX CONFERENCES
Place of publication
Algarve, Portugalsko
Event location
Algarve, Portugalsko
Event date
Jan 1, 2011
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—