All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Finite-valued mappings preserving dimension

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F11%3A43880563" target="_blank" >RIV/44555601:13440/11:43880563 - isvavai.cz</a>

  • Result on the web

    <a href="https://mynsmstore.uh.edu/index.php?route=product/product&product_id=26408" target="_blank" >https://mynsmstore.uh.edu/index.php?route=product/product&product_id=26408</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.topol.2010.11.009" target="_blank" >10.1016/j.topol.2010.11.009</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Finite-valued mappings preserving dimension

  • Original language description

    We say that a set-valued mapping $F:XRightarrow Y$ is {em sig{C}} provided that there exists a countable cover $mathcal{C}$ of $X$ consisting of functionally closed sets such that for every $Cinmathcal{C}$ and each functionally open set $Usubset Y$ one can find a functionally open set $Vsubset X$ such that ${xin C:F(x)cap Uneqemptyset}=Ccap V$. For Tychonoff spaces $X$ and $Y$ we write $Xvartriangleright Y$ provided that there exist a finite-valued sig{C} mapping $F:XRightarrow Y$ anda finite-valued sig{D} mapping $G:YRightarrow X$ (for suitable $mathcal{C}$ and $mathcal{D}$) such that $yin bigcup{F(x):xin G(y)}$ for every $yin Y$. We prove that $Xvartriangleright Y$ implies $dim Xgeqdim Y$. (Here $dim X$ denotes thev{C}ech-Lebesgue (covering) dimension of $X$.) As a corollary, we obtain that $dim X=dim Y$ whenever a perfectly normal space $Y$ is an image of a Tychonoff space $X$ under a finite-to-one open mapping. We also give an example of an o

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2011

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Houston Journal of Mathematics

  • ISSN

    0362-1588

  • e-ISSN

  • Volume of the periodical

    37

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    22

  • Pages from-to

    327-348

  • UT code for WoS article

    000290812200016

  • EID of the result in the Scopus database