Applying biclustering technique and gene ontology analysis for gene expression data processing
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F24%3A43898429" target="_blank" >RIV/44555601:13440/24:43898429 - isvavai.cz</a>
Result on the web
<a href="http://chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://ceur-ws.org/Vol-3675/paper2.pdf" target="_blank" >http://chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://ceur-ws.org/Vol-3675/paper2.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Applying biclustering technique and gene ontology analysis for gene expression data processing
Original language description
This study details the biclustering methods for gene expression data, focusing on the refinement of quality criteria essential for evaluating the generated bicluster structures. An internal biclustering quality criterion is introduced, leveraging mutual information evaluation across both rows and columns within a bicluster. Additionally, the research proposes a novel hybrid biclustering model, which amalgamates the ensemble biclustering algorithm with Bayesian optimization techniques to optimize the algorithm's parameters effectively. This model is grounded on a target objective function derived from the newly proposed quality criterion. Simulations carried out on gene expression data from patients afflicted with various cancer types demonstrate the efficacy of the model. Specifically, the application of the mutual information-based criterion within the objective function results in the formation of a bicluster structure comprising 18 distinct biclusters. Furthermore, the study expands upon a method that employs gene ontology analysis, facilitating the identification of subsets of significant gene expression data from bicluster analysis results. A comprehensive procedure for identifying significant gene subsets through a combination of bicluster and gene ontology analyses is executed. The evaluation of sample classification results, characterized by these significant gene subsets, underscores the method's effectiveness. The classification quality criteria exhibit relatively high values, even with a reduced number of genes, indicating the method's efficiency
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
CEUR Workshop Proceedings
ISBN
—
ISSN
1613-0073
e-ISSN
—
Number of pages
15
Pages from-to
14-28
Publisher name
CEUR-WS
Place of publication
Aachen
Event location
Khmelnytskyi
Event date
Mar 28, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—