All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Applying biclustering technique and gene ontology analysis for gene expression data processing

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F24%3A43898429" target="_blank" >RIV/44555601:13440/24:43898429 - isvavai.cz</a>

  • Result on the web

    <a href="http://chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://ceur-ws.org/Vol-3675/paper2.pdf" target="_blank" >http://chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://ceur-ws.org/Vol-3675/paper2.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Applying biclustering technique and gene ontology analysis for gene expression data processing

  • Original language description

    This study details the biclustering methods for gene expression data, focusing on the refinement of quality criteria essential for evaluating the generated bicluster structures. An internal biclustering quality criterion is introduced, leveraging mutual information evaluation across both rows and columns within a bicluster. Additionally, the research proposes a novel hybrid biclustering model, which amalgamates the ensemble biclustering algorithm with Bayesian optimization techniques to optimize the algorithm&apos;s parameters effectively. This model is grounded on a target objective function derived from the newly proposed quality criterion. Simulations carried out on gene expression data from patients afflicted with various cancer types demonstrate the efficacy of the model. Specifically, the application of the mutual information-based criterion within the objective function results in the formation of a bicluster structure comprising 18 distinct biclusters. Furthermore, the study expands upon a method that employs gene ontology analysis, facilitating the identification of subsets of significant gene expression data from bicluster analysis results. A comprehensive procedure for identifying significant gene subsets through a combination of bicluster and gene ontology analyses is executed. The evaluation of sample classification results, characterized by these significant gene subsets, underscores the method&apos;s effectiveness. The classification quality criteria exhibit relatively high values, even with a reduced number of genes, indicating the method&apos;s efficiency

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    CEUR Workshop Proceedings

  • ISBN

  • ISSN

    1613-0073

  • e-ISSN

  • Number of pages

    15

  • Pages from-to

    14-28

  • Publisher name

    CEUR-WS

  • Place of publication

    Aachen

  • Event location

    Khmelnytskyi

  • Event date

    Mar 28, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article