All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Integrative Approach to Gene Expression Data Analysis: Combining Biclustering Techniques with Gene Ontology

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F24%3A43899002" target="_blank" >RIV/44555601:13440/24:43899002 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-031-70959-3_8" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-70959-3_8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-70959-3_8" target="_blank" >10.1007/978-3-031-70959-3_8</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Integrative Approach to Gene Expression Data Analysis: Combining Biclustering Techniques with Gene Ontology

  • Original language description

    This study refined biclustering methods for gene expression analysis, introducing quality criteria based on mutual information for defining bicluster structures. A hybrid biclustering model utilizing ensemble algorithms and Bayesian optimization was developed to optimize these criteria effectively. Tested on cancer gene expression data, the model used objective functions based on mean squared residue (MSR) and mutual information. Results showed the mutual information criterion to be superior, leading to fewer, more informative biclusters, enhancing gene subset identification for diagnostic purposes. Additionally, gene ontology analysis was integrated into the bicluster quality evaluation, facilitating significant gene subset formation. The findings confirmed that biclustering based on mutual information is more effective than the MSR metric for classifying samples with significant gene subsets, demonstrating the model&apos;s utility in identifying relevant genetic markers for disease diagnosis.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 17th Conference Intellectual Systems of Decision-making and Problems of Computational Intelligence

  • ISBN

    978-3-031-70958-6

  • ISSN

  • e-ISSN

  • Number of pages

    29

  • Pages from-to

    149-177

  • Publisher name

    Springer

  • Place of publication

    Curych

  • Event location

    Ústí nad Labem

  • Event date

    Jun 19, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article