Integrative Approach to Gene Expression Data Analysis: Combining Biclustering Techniques with Gene Ontology
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F24%3A43899002" target="_blank" >RIV/44555601:13440/24:43899002 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/chapter/10.1007/978-3-031-70959-3_8" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-70959-3_8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-70959-3_8" target="_blank" >10.1007/978-3-031-70959-3_8</a>
Alternative languages
Result language
angličtina
Original language name
Integrative Approach to Gene Expression Data Analysis: Combining Biclustering Techniques with Gene Ontology
Original language description
This study refined biclustering methods for gene expression analysis, introducing quality criteria based on mutual information for defining bicluster structures. A hybrid biclustering model utilizing ensemble algorithms and Bayesian optimization was developed to optimize these criteria effectively. Tested on cancer gene expression data, the model used objective functions based on mean squared residue (MSR) and mutual information. Results showed the mutual information criterion to be superior, leading to fewer, more informative biclusters, enhancing gene subset identification for diagnostic purposes. Additionally, gene ontology analysis was integrated into the bicluster quality evaluation, facilitating significant gene subset formation. The findings confirmed that biclustering based on mutual information is more effective than the MSR metric for classifying samples with significant gene subsets, demonstrating the model's utility in identifying relevant genetic markers for disease diagnosis.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 17th Conference Intellectual Systems of Decision-making and Problems of Computational Intelligence
ISBN
978-3-031-70958-6
ISSN
—
e-ISSN
—
Number of pages
29
Pages from-to
149-177
Publisher name
Springer
Place of publication
Curych
Event location
Ústí nad Labem
Event date
Jun 19, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—