All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Parameter Estimation in Linear Dynamic Systems using Bayesian networks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24210%2F19%3A00006706" target="_blank" >RIV/46747885:24210/19:00006706 - isvavai.cz</a>

  • Alternative codes found

    RIV/46747885:24220/19:00006706

  • Result on the web

    <a href="https://ieeexplore.ieee.org/document/8815029" target="_blank" >https://ieeexplore.ieee.org/document/8815029</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/PC.2019.8815029" target="_blank" >10.1109/PC.2019.8815029</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Parameter Estimation in Linear Dynamic Systems using Bayesian networks

  • Original language description

    Parameter estimation in models of dynamic systems is a common preliminary procedure in control, monitoring, fault detection and diagnosis. A range of tools to fulfill this task has been constantly expanded with new additions to meet the increasing demands of modern technological processes. This article proposes the use of Bayesian networks to estimate the parameters of linear dynamic systems described by a state-space model. The proposed approach is used for system identification of two simulated dynamic systems. The parameters are estimated using a learning function for Bayesian networks from Bayes Net Toolbox for Matlab. The results indicate that Bayesian networks can be used as a system identification tool that can compete with conventional methods. However, the approach requires further research aiming to increase convergence of estimates and eliminate numerical problems.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 2019 22nd International Conference on Process Control

  • ISBN

    978-1-72813-758-2

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    203-208

  • Publisher name

    IEEE

  • Place of publication

  • Event location

    Štrbské Pleso

  • Event date

    Jan 1, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article