Localized paclitaxel delivery using a novel hyaluronic acid-coated fibrous carrier produced via needle-less electrospinning
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24410%2F25%3A00013345" target="_blank" >RIV/46747885:24410/25:00013345 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1177/15280837251322712" target="_blank" >https://doi.org/10.1177/15280837251322712</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1177/15280837251322712" target="_blank" >10.1177/15280837251322712</a>
Alternative languages
Result language
angličtina
Original language name
Localized paclitaxel delivery using a novel hyaluronic acid-coated fibrous carrier produced via needle-less electrospinning
Original language description
Pancreatic cancer remains one of the most challenging malignancies to treat due to its dense stromal microenvironment and resistance to conventional therapies. This study introduces a novel localized drug delivery system design to target residual cancer cells following surgery. Electrospun fibrous carriers were fabricated using needle-less electrospinning from polycaprolactone (PCL), silk fibroin (SF), and their blend. Among these, PCL carriers (average fiber diameter: 141 +/- 28 nm) exhibited the highest and most sustained paclitaxel (PTX) release in vitro. Coating the PCL carrier with hyaluronic acid (HA) increased the fiber diameter to 535 +/- 116 nm and modulated PTX release, shifting from an initial rapid release phase in uncoated carrier to a more gradual and sustained release over 120 hours. PTX-loaded HA-coated electrospun PCL carriers significantly reduced MiaPaCa cell viability, with only 13% viability at 96 hours compared to 22% for the non-coated carrier. This HA-coated electrospun PCL carrier offers a scalable and efficient solution for localized PTX delivery, providing sustained drug release, prolonged cytotoxic efficacy, and reduced off-target effects. Its industrial scaleability, combined with its potential for post-surgical pancreatic cancer management, presents an innovative approach to minimizing reliance on systemic chemotherapy and its associated toxicities. The use of needle-less NanospiderTM electrospinning technology further emphasizes its clinical potential, with future in vivo studies needed to confirm carrier‘s safety, pharmacokinetics, and therapeutic benefits.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20503 - Textiles; including synthetic dyes, colours, fibres (nanoscale materials to be 2.10; biomaterials to be 2.9)
Result continuities
Project
<a href="/en/project/EF16_019%2F0000843" target="_blank" >EF16_019/0000843: Hybrid Materials for Hierarchical Structure</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2025
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
JOURNAL OF INDUSTRIAL TEXTILES
ISSN
1528-0837
e-ISSN
—
Volume of the periodical
55
Issue of the periodical within the volume
FEB
Country of publishing house
US - UNITED STATES
Number of pages
27
Pages from-to
1-27
UT code for WoS article
001427575500001
EID of the result in the Scopus database
—