All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Quadratic wavelets with short support on the interval

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F12%3A%230000824" target="_blank" >RIV/46747885:24510/12:#0000824 - isvavai.cz</a>

  • Result on the web

    <a href="http://proceedings.aip.org/resource/2/apcpcs/1497/1/113_1?isAuthorized=no" target="_blank" >http://proceedings.aip.org/resource/2/apcpcs/1497/1/113_1?isAuthorized=no</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/1.4766774" target="_blank" >10.1063/1.4766774</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Quadratic wavelets with short support on the interval

  • Original language description

    It is well-known that a B-spline of order m has the shortest support among all compactly supported spline functions with respect to a given smoothness. And recently, B. Han and Z. Shen constructed a Riesz wavelet bases of the space L-2(R) with the shortest support and with m vanishing moments based on B-spline of order m. Such wavelets are important for example in signal processing and in numerical solution of differential equations because of their excellent approximation properties and fast algorithmswhich provide. In our contribution, we present an adaptation of quadratic wavelets to the interval [0,1] which preserves vanishing moments. The proposed adaptation is a modification of the approach proposed by D. Cerna et al. and leads to a better conditioned basis.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE '12)

  • ISBN

    978-0-7354-1111-1

  • ISSN

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    113-117

  • Publisher name

    AMER INST PHYSICS

  • Place of publication

    MELVILLE, NY 11747-4501 USA

  • Event location

    Sozopol, BULGARIA

  • Event date

    Dec 6, 2012

  • Type of event by nationality

    EUR - Evropská akce

  • UT code for WoS article

    312260000015