Quadratic wavelets with short support on the interval
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F12%3A%230000824" target="_blank" >RIV/46747885:24510/12:#0000824 - isvavai.cz</a>
Result on the web
<a href="http://proceedings.aip.org/resource/2/apcpcs/1497/1/113_1?isAuthorized=no" target="_blank" >http://proceedings.aip.org/resource/2/apcpcs/1497/1/113_1?isAuthorized=no</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/1.4766774" target="_blank" >10.1063/1.4766774</a>
Alternative languages
Result language
angličtina
Original language name
Quadratic wavelets with short support on the interval
Original language description
It is well-known that a B-spline of order m has the shortest support among all compactly supported spline functions with respect to a given smoothness. And recently, B. Han and Z. Shen constructed a Riesz wavelet bases of the space L-2(R) with the shortest support and with m vanishing moments based on B-spline of order m. Such wavelets are important for example in signal processing and in numerical solution of differential equations because of their excellent approximation properties and fast algorithmswhich provide. In our contribution, we present an adaptation of quadratic wavelets to the interval [0,1] which preserves vanishing moments. The proposed adaptation is a modification of the approach proposed by D. Cerna et al. and leads to a better conditioned basis.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE '12)
ISBN
978-0-7354-1111-1
ISSN
—
e-ISSN
—
Number of pages
5
Pages from-to
113-117
Publisher name
AMER INST PHYSICS
Place of publication
MELVILLE, NY 11747-4501 USA
Event location
Sozopol, BULGARIA
Event date
Dec 6, 2012
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
312260000015