A QUADRATIC SPLINE-WAVELET BASIS ON THE INTERVAL
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F13%3A%230001006" target="_blank" >RIV/46747885:24510/13:#0001006 - isvavai.cz</a>
Result on the web
<a href="http://users.math.cas.cz/~panm/Panm16/proceedings_final/029_cerna.pdf" target="_blank" >http://users.math.cas.cz/~panm/Panm16/proceedings_final/029_cerna.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
A QUADRATIC SPLINE-WAVELET BASIS ON THE INTERVAL
Original language description
In signal and image processing as well as in numerical solution of differential equations, wavelets with short support and with vanishing moments are important because they have good approximation properties and enable fast algorithms. A B-spline of order m is a spline function that has minimal support among all compactly supported refinable functions with respect to a given smoothness. And recently, B. Han and Z. Shen constructed Riesz wavelet bases of L-2(R) with m vanishing moments based on B-splineof order in. In our contribution, we present an adaptation of their quadratic spline-wavelets to the interval [0,1] which preserves vanishing moments.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/EE2.3.09.0155" target="_blank" >EE2.3.09.0155: Constitution and improvement of a team for demanding technical computations on parallel computers at TU Liberec</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
PROGRAMS AND ALGORITHMS OF NUMERICAL MATHEMATICS 16
ISBN
978-80-85823-62-2
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
29-34
Publisher name
ACAD SCIENCES CZECH REPUBLIC, INST MATHEMATICS, ZITNA 25, PRAHA 1, CZ-115 67, CZECH REPUBLIC
Place of publication
Praha
Event location
Dolní Maxov
Event date
Dec 6, 2012
Type of event by nationality
CST - Celostátní akce
UT code for WoS article
317994100005