Wavelets based on Hermite cubic splines
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F16%3A00004031" target="_blank" >RIV/46747885:24510/16:00004031 - isvavai.cz</a>
Result on the web
<a href="http://aip.scitation.org/doi/pdf/10.1063/1.4951865" target="_blank" >http://aip.scitation.org/doi/pdf/10.1063/1.4951865</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Wavelets based on Hermite cubic splines
Original language description
In 2000, W. Dahmen et al. designed biorthogonal multi-wavelets adapted to the interval [0,1] on the basis of Hermite cubic splines. In recent years, several more simple constructions of wavelet bases based on Hermite cubic splines were proposed. We focus here on wavelet bases with respect to which both the mass and stiffness matrices are sparse in the sense that the number of nonzero elements in any column is bounded by a constant. Then, a matrix-vector multiplication in adaptive wavelet methods can be performed exactly with linear complexity for any second order differential equation with constant coefficients. In this contribution, we shortly review these constructions and propose a new wavelet which leads to improved Riesz constants. Wavelets have four vanishing wavelet moments.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
AIP Conference Proceedings
ISBN
978-0-7354-1392-4
ISSN
1551-7616
e-ISSN
—
Number of pages
4
Pages from-to
—
Publisher name
AMER INST PHYSICS
Place of publication
MELVILLE, NY 11747-4501 USA
Event location
Rhodes, GREECE
Event date
Jan 1, 2015
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000380803300113