All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Hermite Cubic Spline Multi-wavelets on the Cube

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F15%3A%230001299" target="_blank" >RIV/46747885:24510/15:#0001299 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1063/1.4936705" target="_blank" >http://dx.doi.org/10.1063/1.4936705</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/1.4936705" target="_blank" >10.1063/1.4936705</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Hermite Cubic Spline Multi-wavelets on the Cube

  • Original language description

    In 2000, W. Dahmen et al. proposed a construction of Hermite cubic spline multi-wavelets adapted to the interval [0, 1]. Later, several more simple constructions of wavelet bases based on Hermite cubic splines were proposed. We focus here on wavelet basis with respect to which both the mass and stiffness matrices are sparse in the sense that the number of non-zero elements in each column is bounded by a constant. Then, a matrix-vector multiplication in adaptive wavelet methods can be performed exactly with linear complexity for any second order differential equation with constant coefficients. In this contribution, we shortly review these constructions, use an anisotropic tensor product to obtain bases on the cube [0, 1]^3, and compare their conditionnumbers.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    41ST INTERNATIONAL CONFERENCE APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE'15) , AIP Conference Proceedings 1690

  • ISBN

    9780735413375

  • ISSN

    0094-243X

  • e-ISSN

  • Number of pages

    4

  • Pages from-to

  • Publisher name

    AMER INST PHYSICS

  • Place of publication

    USA

  • Event location

    Sozopol, BULGARIA

  • Event date

    Jun 8, 2015

  • Type of event by nationality

    EUR - Evropská akce

  • UT code for WoS article

    000366565600027