Hermite Cubic Spline Multi-wavelets on the Cube
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F15%3A%230001299" target="_blank" >RIV/46747885:24510/15:#0001299 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1063/1.4936705" target="_blank" >http://dx.doi.org/10.1063/1.4936705</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/1.4936705" target="_blank" >10.1063/1.4936705</a>
Alternative languages
Result language
angličtina
Original language name
Hermite Cubic Spline Multi-wavelets on the Cube
Original language description
In 2000, W. Dahmen et al. proposed a construction of Hermite cubic spline multi-wavelets adapted to the interval [0, 1]. Later, several more simple constructions of wavelet bases based on Hermite cubic splines were proposed. We focus here on wavelet basis with respect to which both the mass and stiffness matrices are sparse in the sense that the number of non-zero elements in each column is bounded by a constant. Then, a matrix-vector multiplication in adaptive wavelet methods can be performed exactly with linear complexity for any second order differential equation with constant coefficients. In this contribution, we shortly review these constructions, use an anisotropic tensor product to obtain bases on the cube [0, 1]^3, and compare their conditionnumbers.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
41ST INTERNATIONAL CONFERENCE APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE'15) , AIP Conference Proceedings 1690
ISBN
9780735413375
ISSN
0094-243X
e-ISSN
—
Number of pages
4
Pages from-to
—
Publisher name
AMER INST PHYSICS
Place of publication
USA
Event location
Sozopol, BULGARIA
Event date
Jun 8, 2015
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
000366565600027