Liguistically Fuzzy Rules Derived by Neural Network
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19240%2F10%3A%230003232" target="_blank" >RIV/47813059:19240/10:#0003232 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Liguistically Fuzzy Rules Derived by Neural Network
Original language description
A fuzzy time series model is proposed and applied to predict chaotic financial process. The general methodological framework of classical and fuzzy modelling of economic time series is considered. A complete fuzzy time series modelling approach is proposed. To generate fuzzy rules from data, the neural network with Supervised Competitive Learning (SCL)-based product-space clustering and a fuzzy logic RBF network are used
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
AH - Economics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA402%2F08%2F0022" target="_blank" >GA402/08/0022: The Latest Intelligent Methodologies for Economic Time Series Modelling and Forecasting</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Information, Control and Management Systems
ISSN
1336-1716
e-ISSN
—
Volume of the periodical
8
Issue of the periodical within the volume
2
Country of publishing house
SK - SLOVAKIA
Number of pages
9
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—