All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Time series analysis and data prediction of large databases: An application to electricity demand prediction

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19240%2F14%3A%230005349" target="_blank" >RIV/47813059:19240/14:#0005349 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Time series analysis and data prediction of large databases: An application to electricity demand prediction

  • Original language description

    We evaluate statistical and machine learning methods for half-hourly 1-step-ahead electricity demand prediction using Australian electricity data. We show that the machine learning methods that use autocorrelation feature selection and BackPropagation Neural Networks, Linear Regression as prediction algorithms outperform the statistical methods Exponential Smoothing and also a number of baselines. We analyze the effect of day time on the prediction error and show that there are time-intervals associatedwith higher and lower errors and that the prediction methods also differ in their accuracy during the different time intervals. This analysis provides the foundation for construction a hybrid prediction model that achieved lower prediction error. We also show that an RBF neural network trained by genetic algorithm can achieved better prediction results than classic one. The aspect of increased transparency of networks through genetic evolution development features and granular computati

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: IT4Innovations Centre of Excellence</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Advanced Material Research

  • ISSN

    1022-6680

  • e-ISSN

  • Volume of the periodical

  • Issue of the periodical within the volume

    neuveden

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    6

  • Pages from-to

    401-406

  • UT code for WoS article

  • EID of the result in the Scopus database