Time series analysis and data prediction of large databases: An application to electricity demand prediction
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19240%2F14%3A%230005349" target="_blank" >RIV/47813059:19240/14:#0005349 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Time series analysis and data prediction of large databases: An application to electricity demand prediction
Original language description
We evaluate statistical and machine learning methods for half-hourly 1-step-ahead electricity demand prediction using Australian electricity data. We show that the machine learning methods that use autocorrelation feature selection and BackPropagation Neural Networks, Linear Regression as prediction algorithms outperform the statistical methods Exponential Smoothing and also a number of baselines. We analyze the effect of day time on the prediction error and show that there are time-intervals associatedwith higher and lower errors and that the prediction methods also differ in their accuracy during the different time intervals. This analysis provides the foundation for construction a hybrid prediction model that achieved lower prediction error. We also show that an RBF neural network trained by genetic algorithm can achieved better prediction results than classic one. The aspect of increased transparency of networks through genetic evolution development features and granular computati
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: IT4Innovations Centre of Excellence</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advanced Material Research
ISSN
1022-6680
e-ISSN
—
Volume of the periodical
—
Issue of the periodical within the volume
neuveden
Country of publishing house
CH - SWITZERLAND
Number of pages
6
Pages from-to
401-406
UT code for WoS article
—
EID of the result in the Scopus database
—