The functional definition of generalized geodesics
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F00%3A00000040" target="_blank" >RIV/47813059:19610/00:00000040 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
The functional definition of generalized geodesics
Original language description
In this paper, a functional definition of geodesics is introduced which allows to generalize the notion of a geodesic from smooth to topological manifolds. In the $ C^infty $ case it coincides with the classical definition of geodesics of a linear connection. If $ C^infty $-smoothness is not required, it is shown by an example that the new definition includes geodesics of non-linear, homogeneous connections. Moreover, an example of generalized geodesics which do not arise from any connection is presented. Finally, some remarks upon flatness and metrizability conditions on topological manifolds are amended.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2000
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Aequationes Mathematicae
ISSN
ISSN0001-9054
e-ISSN
—
Volume of the periodical
59
Issue of the periodical within the volume
3
Country of publishing house
AT - AUSTRIA
Number of pages
13
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—