Functional aquations for metric geodesic arcs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F02%3A00000098" target="_blank" >RIV/47813059:19610/02:00000098 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Functional aquations for metric geodesic arcs
Original language description
The functional equations which make possible to generalize the notion of geodesics from smooth Riemannian manifold to arbitrary metric spaces are presented. Necessary and sufficient conditions for the set of all geodesics generated by some metric to be aset of generalized geodesic in the topological sense are derived. An example and a conterexample to such a situation are introduced.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F00%2F0724" target="_blank" >GA201/00/0724: Geometric analysis</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2002
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Differential geometry and its applications
ISBN
80-7248-166-5
ISSN
—
e-ISSN
—
Number of pages
5
Pages from-to
197-201
Publisher name
Slezská univerzita v Opavě
Place of publication
Opava
Event location
Opava
Event date
Aug 27, 2001
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—