Functional equation of Dhombres type in the real case
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F11%3A%230000302" target="_blank" >RIV/47813059:19610/11:#0000302 - isvavai.cz</a>
Result on the web
<a href="http://www.math.klte.hu/publi/contents.php?szam=78" target="_blank" >http://www.math.klte.hu/publi/contents.php?szam=78</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5486/PMD.2011.4888" target="_blank" >10.5486/PMD.2011.4888</a>
Alternative languages
Result language
angličtina
Original language name
Functional equation of Dhombres type in the real case
Original language description
We consider continuous solutions f : R(+) -> R(+) = (0, infinity) of the functional equation f(xf(s)) = phi(f(x)) where phi is a given continuous map R(+) -> R(+). If phi is an increasing homeomorphism the solutions are completely described, if not thereare only partial results. In this paper we bring some necessary conditions upon a possible range R(f). In particular, if phi vertical bar R(f) has no periodic points except for fixed points then there are at most two fixed points in R(f), and all possible types of R(f) and all possible types of behavior of f can be described. The paper contains techniques which essentially simplify the description of the class of all solutions.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F10%2F0887" target="_blank" >GAP201/10/0887: Discrete dynamical systems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Publicationes Mathematicae Debrecen
ISSN
0033-3883
e-ISSN
—
Volume of the periodical
78
Issue of the periodical within the volume
3
Country of publishing house
HU - HUNGARY
Number of pages
15
Pages from-to
659-673
UT code for WoS article
000290368600016
EID of the result in the Scopus database
—