All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On complete integrability of the Mikhailov-Novikov-Wang system

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F11%3A%230000317" target="_blank" >RIV/47813059:19610/11:#0000317 - isvavai.cz</a>

  • Result on the web

    <a href="http://jmp.aip.org/resource/1/jmapaq/v52/i4/p043513_s1" target="_blank" >http://jmp.aip.org/resource/1/jmapaq/v52/i4/p043513_s1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/1.3578002" target="_blank" >10.1063/1.3578002</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On complete integrability of the Mikhailov-Novikov-Wang system

  • Original language description

    In the present paper we consider a new two-component fifth-order integrable system recently found by Mikhailov, Novikov, and Wang, and show that this system possesses a hereditary recursion operator and infinitely many commuting symmetries and conservation laws, as well as infinitely many compatible Hamiltonian and symplectic structures, and is therefore completely integrable. The system in question admits a reduction to the Kaup-Kupershmidt equation.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2011

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Physics

  • ISSN

    0022-2488

  • e-ISSN

  • Volume of the periodical

    52

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    5

  • Pages from-to

    "043513-1"-"043513-5"

  • UT code for WoS article

    000290048300037

  • EID of the result in the Scopus database